

#### Revisit Cloud Clearing vs. FOVs

Jennifer Wei<sup>1</sup>
Murty Divakarla<sup>3</sup>, Antonia Gambacorta<sup>1</sup>,
Xingpin Liu<sup>1</sup>, Eric Maddy<sup>1</sup>, Nick Nalli<sup>1</sup>,
Fengying Sun<sup>1</sup>, Haibing Sun<sup>1</sup>,
Xiaozhen Xiong<sup>1</sup>, Lihang Zhou<sup>1</sup>
Chris Barnet<sup>2</sup>

Oct. 11, 2007, AIRS Science Team Meeting

<sup>1</sup>Perot Systems Government Services

<sup>2</sup>NOAA/NESDIS/STAR

3IMSG



#### Overview

- Problem Statement
- Background/Preliminary Experiment
  - Test Case: Granule 401 Sep. 6, 2002
  - NOAA research code (emulate v.5), but did not apply v5 QA
- Results
- Summary/Recommendation for V6



### Problem: Cold Bias in CCR?

#### G401, 2002/09/06, v5, $|Lat| \le 60$



- First noticed by S. Y. Lee
- Rccr-Rwarm
   should be
   positive for
   most cases
   (except strong
   inversions) due
   to clouds in the
   warmest FOV

Rccr

■In reality, we use multiple channels, each with their own slope, in a multi-dimensional least squared fit to a line.

Rest

$$R^{cc} = \overline{R} + \sum_{i} \eta_{i} (\overline{R} - R^{i})$$

**Cloud Fraction in FOV** 

4 Barnet @ 2006.09 ASTM



### Example 1 of a cold CCR bias: Failed CC assumptions, qual\_temp\_bot \neq 0





### Example2: MIT Starts Out OK, CCR misses clouds

Sat Sep 23. 1:17 PM



Terminal ( DL 1

IDL 2

MIT Starts out Warm

4 K cold bias in window region

Initially we thought we had clouds, but later we zeroed them out.

Mixed land & water in scene



### Where $(BT_{ccr} < BT_{warm})$ ?







Rccr

Rest

#### What can we do?

- 2006.09 ASTM Chris Barnet showed all versions (v4/v5) have this problem
- Barnet also showed a system that pivots off of the warmest FOV is even worse.
- Proper use of surface sensitive channels (In v5, cloud clearing is using 655 cm<sup>-1</sup> ~ 811 cm<sup>-1</sup>)



**Cloud Fraction in FOV** 

Barnet @ 2006.09 ASTM

Experiment:
Added 4
channels: 820.83,
917.31, 937.91,
979.13

NOTE: In V5, we kicked out these channels over land





### V5 Temperature Profile and Radiances from Rccr and 9 cloudy FOVs



### V5 + 4 Chls Temperature Profile and Radiances from Rccr and 9 cloudy FOVs





### 9 FOVs vs. Rccr, Rest



0

100

90

20

40

60

80

100



PGE50 + 4 Chls, f=811.784, pcld= 657 m

V5 + 4 Chls

 Cloud top pressure is moving towards lower atmosphere · Cloud fractions in 9 FOVs also changed • If Rest starts out really cold, Rccr will be colder than Rwarm (constraint on Rest-<R>)

### All Ocean Cases





### T, Q BIAS (Ret-ECMWF) for G401







## T, Q BIAS for Ocean only and a Common Data Set of Ocean Cases





# Summary/Future Work at NOAA (Recommendation for V6)

- Cold biases in cloud clearing radiances is coming from cloud contaminated Rest. This can be mitigated by
  - Consider window region channels
  - Proper use of surface sensitive channels (land & ocean)
- Might want to consider an experiment with a simultaneous solution of  $\eta$  and surface skin temperature adjustment
  - Currently we weight the fit by surface sensitivity, so that surface channels have less impact.
  - If we solved for a  $\Delta$  T<sub>skin</sub>, then η would be less sensitive to initial cloud contamination.
- Contamination relates to cloud types?
  - Need to compare with other data measurement (e.g, CloudSat/CALIPSO)





### All Ocean Cases





### 9 FOVs vs. Rccr, Rest





V5 + 4 Chls

- Cloud top pressure is moving towards lower atmosphere
- Cloud fractions in 9 FOVs also changed
- If Rest starts out really cold, Rccr will be colder than Rwarm (constraint on Rest-<R>>),



### All Accepted Cases

